1,495 research outputs found

    Decomposing conformance checking on Petri nets with data

    Get PDF
    Process mining techniques relate observed behavior to modeled behavior, e.g., the automatic discovery of a Petri net based on an event log. Process mining is not limited to process discovery and also includes conformance checking. Conformance checking techniques are used for evaluating the quality of discovered process models and to diagnose deviations from some normative model (e.g., to check compliance). Existing conformance checking approaches typically focus on the control flow, thus being unable to diagnose deviations concerning data. This paper proposes a technique to check the conformance of data-aware process models. We use so-called "data Petri nets" to model data variables, guards, and read/write actions. Additional perspectives such as resource allocation and time constraints can be encoded in terms of variables. Data-aware conformance checking problem may be very time consuming and sometimes even intractable when there are many transitions and data variables. Therefore, we propose a technique to decompose large data-aware conformance checking problems into smaller problems that can be solved more efficiently. We provide a general correctness result showing that decomposition does not influence the outcome of conformance checking. Moreover, two decomposition strategies are presented. The approach is supported through ProM plug-ins and experimental results show that significant performance improvements are indeed possible

    A Framework for Online Conformance Checking

    Get PDF
    Conformance checking – a branch of process mining – focuses on establishing to what extent actual executions of a process are in line with the expected behavior of a reference model. Current conformance checking techniques only allow for a-posteriori analysis: the amount of (non-)conformant behavior is quantified after the completion of the process instance. In this paper we propose a framework for online conformance checking: not only do we quantify (non-)conformant behavior as the execution is running, we also restrict the computation to constant time complexity per event analyzed, thus enabling the online analysis of a stream of events. The framework is instantiated with ideas coming from the theory of regions, and state similarity. An implementation is available in ProM and promising results have been obtained.Peer ReviewedPostprint (author's final draft

    A recursive paradigm for aligning observed behavior of large structured process models

    Get PDF
    The alignment of observed and modeled behavior is a crucial problem in process mining, since it opens the door for conformance checking and enhancement of process models. The state of the art techniques for the computation of alignments rely on a full exploration of the combination of the model state space and the observed behavior (an event log), which hampers their applicability for large instances. This paper presents a fresh view to the alignment problem: the computation of alignments is casted as the resolution of Integer Linear Programming models, where the user can decide the granularity of the alignment steps. Moreover, a novel recursive strategy is used to split the problem into small pieces, exponentially reducing the complexity of the ILP models to be solved. The contributions of this paper represent a promising alternative to fight the inherent complexity of computing alignments for large instances.Peer ReviewedPostprint (author's final draft

    Anti-alignments in conformance checking: the dark side of process models

    Get PDF
    Conformance checking techniques asses the suitability of a process model in representing an underlying process, observed through a collection of real executions. These techniques suffer from the wellknown state space explosion problem, hence handling process models exhibiting large or even infinite state spaces remains a challenge. One important metric in conformance checking is to asses the precision of the model with respect to the observed executions, i.e., characterize the ability of the model to produce behavior unrelated to the one observed. By avoiding the computation of the full state space of a model, current techniques only provide estimations of the precision metric, which in some situations tend to be very optimistic, thus hiding real problems a process model may have. In this paper we present the notion of antialignment as a concept to help unveiling traces in the model that may deviate significantly from the observed behavior. Using anti-alignments, current estimations can be improved, e.g., in precision checking. We show how to express the problem of finding anti-alignments as the satisfiability of a Boolean formula, and provide a tool which can deal with large models efficiently.Peer ReviewedPostprint (author's final draft

    Building Process-Oriented Data Science Solutions for Real-World Healthcare

    Get PDF
    The COVID-19 pandemic has highlighted some of the opportunities, problems and barriers facing the application of Artificial Intelligence to the medical domain. It is becoming increasingly important to determine how Artificial Intelligence will help healthcare providers understand and improve the daily practice of medicine. As a part of the Artificial Intelligence research field, the Process-Oriented Data Science community has been active in the analysis of this situation and in identifying current challenges and available solutions. We have identified a need to integrate the best efforts made by the community to ensure that promised improvements to care processes can be achieved in real healthcare. In this paper, we argue that it is necessary to provide appropriate tools to support medical experts and that frequent, interactive communication between medical experts and data miners is needed to co-create solutions. Process-Oriented Data Science, and specifically concrete techniques such as Process Mining, can offer an easy to manage set of tools for developing understandable and explainable Artificial Intelligence solutions. Process Mining offers tools, methods and a data driven approach that can involve medical experts in the process of co-discovering real-world evidence in an interactive way. It is time for Process-Oriented Data scientists to collaborate more closely with healthcare professionals to provide and build useful, understandable solutions that answer practical questions in daily practice. With a shared vision, we should be better prepared to meet the complex challenges that will shape the future of healthcare

    Finding suitable activity clusters for decomposed process discovery

    Get PDF
    Event data can be found in any information system and provide the starting point for a range of process mining techniques. The widespread availability of large amounts of event data also creates new challenges. Existing process mining techniques are often unable to handle "big event data" adequately. Decomposed process mining aims to solve this problem by decomposing the process mining problem into many smaller problems which can be solved in less time, using less resources, or even in parallel. Many decomposed process mining techniques have been proposed in literature. Analysis shows that even though the decomposition step takes a relatively small amount of time, it is of key importance in finding a high-quality process model and for the computation time required to discover the individual parts. Currently there is no way to assess the quality of a decomposition beforehand. We define three quality notions that can be used to assess a decomposition, before using it to discover a model or check conformance with. We then propose a decomposition approach that uses these notions and is able to find a high-quality decomposition in little time. Keywords: decomposed process mining, decomposed process discovery, distributed computing, event lo

    Approximate computation of alignments of business processes through relaxation labelling

    Get PDF
    A fundamental problem in conformance checking is aligning event data with process models. Unfortunately, existing techniques for this task are either complex, or can only be applicable to restricted classes of models. This in practice means that for large inputs, current techniques often fail to produce a result. In this paper we propose a method to approximate alignments for unconstrained process models, which relies on the use of relaxation labelling techniques on top of a partial order representation of the process model. The implementation on the proposed technique achieves a speed-up of several orders of magnitude with respect to the approaches in the literature (either optimal or approximate), often with a reasonable trade-off on the cost of the obtained alignment.Peer ReviewedPostprint (author's final draft

    An evolutionary technique to approximate multiple optimal alignments

    Get PDF
    The alignment of observed and modeled behavior is an essential aid for organizations, since it opens the door for root-cause analysis and enhancement of processes. The state-of-the-art technique for computing alignments has exponential time and space complexity, hindering its applicability for medium and large instances. Moreover, the fact that there may be multiple optimal alignments is perceived as a negative situation, while in reality it may provide a more comprehensive picture of the model’s explanation of observed behavior, from which other techniques may benefit. This paper presents a novel evolutionary technique for approximating multiple optimal alignments. Remarkably, the memory footprint of the proposed technique is bounded, representing an unprecedented guarantee with respect to the state-of-the-art methods for the same task. The technique is implemented into a tool, and experiments on several benchmarks are provided.Peer ReviewedPostprint (author's final draft

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore